
23
DECISION SUPPORT

Nothing is more difficult, and therefore more precious, than to be able to

decide.

—Napoleon Bonaparte

Database management systems are widely used by organizations for maintaining data

that documents their everyday operations. In applications that update such operational

data, transactions typically make small changes (for example, adding a reservation or

depositing a check) and a large number of transactions must be reliably and efficiently

processed. Such online transaction processing (OLTP) applications have driven

the growth of the DBMS industry in the past three decades and will doubtless continue

to be important. DBMSs have traditionally been optimized extensively to perform well

in such applications.

Recently, however, organizations have increasingly emphasized applications in which

current and historical data are comprehensively analyzed and explored, identifying

useful trends and creating summaries of the data, in order to support high-level decision

making. Such applications are referred to as decision support. Decision support has

rapidly grown into a multibillion dollar industry, and further growth is expected. A

number of vendors offer specialized database systems and analysis tools to facilitate

decision support. Industry organizations are emerging to set standards and create

consensus on issues like language and architecture design.

Mainstream relational DBMS vendors have recognized the importance of this market

segment and are adding features to their products in order to support it. In particular,

novel indexing and query optimization techniques are being added to support complex

queries. Systems are also providing additional features for defining and using views.

The use of views has gained rapidly in popularity because of their utility in applica-

tions involving complex data analysis. While queries on views can be answered by

evaluating the view definition when the query is submitted, views also offer the option

of precomputing the view definition and thereby making queries run much faster. This

option becomes increasingly attractive as the view definition increases in complexity

and the frequency of queries increases.

Carrying the motivation for precomputed views one step further, organizations can

consolidate information from several databases into a data warehouse by copying tables

677

678 Chapter 23

from many sources into one location or by materializing a view that is defined over

tables from several sources. Data warehousing has become widespread, and many

specialized products are now available to create and manage warehouses of data from

multiple databases.

We begin this chapter with an overview of decision support in Section 23.1. We cover

data warehousing in Section 23.2 and present on-line analytic processing, or OLAP, in

Section 23.3. We discuss implementation techniques to support OLAP in Section 23.4.

These new implementation techniques form the basis for specialized OLAP products,

and are also being added to relational DBMS products to support complex decision

support applications. We discuss the role of views in decision support applications and

techniques for rapidly processing queries on views in Section 23.5. Finally, in Section

23.6, we discuss a recent trend toward quickly computing approximate answers or a

desired subset of answers, rather than computing all answers.

23.1 INTRODUCTION TO DECISION SUPPORT

Organizational decision making requires a comprehensive view of all aspects of an enter-

prise, and many organizations have therefore created consolidated data warehouses

that contain data drawn from several databases maintained by different business units,

together with historical and summary information.

The trend toward data warehousing is complemented by an increased emphasis on

powerful analysis tools. There are many characteristics of decision support queries

that make traditional SQL systems inadequate:

The conditions in the WHERE clause often contain many AND and OR conditions.

As we saw in Section 12.3.3, OR conditions, in particular, are poorly handled in

many relational DBMSs.

Applications require extensive use of statistical functions such as standard devia-

tion, which are not supported in SQL-92. Thus, SQL queries must frequently be

embedded in a host language program.

Many queries involve conditions over time or require aggregating over time periods.

SQL-92 provides poor support for such time-series analysis.

Users often need to pose several related queries. Since there is no convenient

way to express these commonly occurring families of queries, users have to write

them as a collection of independent queries, which can be tedious. Further, the

DBMS has no way to recognize and exploit optimization opportunities arising

from executing many related queries together.

Three broad classes of analysis tools are available. First, there are systems that support

a class of stylized queries that typically involve group-by and aggregation operators

Decision Support 679

and provide excellent support for complex boolean conditions, statistical functions,

and features for time-series analysis. Applications dominated by such queries are called

online analytic processing, or OLAP. These systems support a querying style in

which the data is best thought of as a multidimensional array, and are influenced by

end user tools such as spreadsheets, in addition to database query languages.

Second, there are DBMSs that support traditional SQL-style queries but are de-

signed to also support OLAP queries efficiently. Such systems can be regarded as

relational DBMSs optimized for decision support applications. Many vendors of rela-

tional DBMSs are currently enhancing their products in this direction, and over time

the distinction between specialized OLAP systems and relational DBMSs enhanced to

support OLAP queries is likely to diminish.

The third class of analysis tools is motivated by the desire to find interesting or un-

expected trends and patterns in large data sets, rather than by the complex query

characteristics listed above. In exploratory data analysis, although an analyst can

recognize an ‘interesting pattern’ when shown such a pattern, it is very difficult to

formulate a query that captures the essence of an interesting pattern. For example,

an analyst looking at credit-card usage histories may want to detect unusual activity

indicating misuse of a lost or stolen card. A catalog merchant may want to look at

customer records to identify promising customers for a new promotion; this identifi-

cation would depend on income levels, buying patterns, demonstrated interest areas,

and so on. The amount of data in many applications is too large to permit manual

analysis or even traditional statistical analysis, and the goal of data mining is to

support exploratory analysis over very large data sets. We discuss data mining further

in Chapter 24.

Clearly, evaluating OLAP or data mining queries over globally distributed data is

likely to be excruciatingly slow. Further, for such complex analysis, often statistical

in nature, it is not essential that the most current version of the data be used. The

natural solution is to create a centralized repository of all the data, i.e., a data ware-

house. Thus, the availability of a warehouse facilitates the application of OLAP and

data mining tools, and conversely, the desire to apply such analysis tools is a strong

motivation for building a data warehouse.

23.2 DATA WAREHOUSING

Data warehouses contain consolidated data from many sources, augmented with sum-

mary information and covering a long time period. Warehouses are much larger than

other kinds of databases; sizes ranging from several gigabytes to terabytes are com-

mon. Typical workloads involve ad hoc, fairly complex queries and fast response times

are important. These characteristics differentiate warehouse applications from OLTP

applications, and different DBMS design and implementation techniques must be used

680 Chapter 23

to achieve satisfactory results. A distributed DBMS with good scalability and high

availability (achieved by storing tables redundantly at more than one site) is required

for very large warehouses.

A typical data warehousing architecture is illustrated in Figure 23.1. An organiza-

OLAP

Data Warehouse

TRANSFORM

EXTRACT
CLEAN

LOAD
REFRESH

SERVES

External Data Sources

Operational Databases Data Mining

Visualization

Metadata Repository

Figure 23.1 A Typical Data Warehousing Architecture

tion’s daily operations access and modify operational databases. Data from these

operational databases and other external sources (e.g., customer profiles supplied by

external consultants) are extracted by using gateways, or standard external interfaces

supported by the underlying DBMSs. A gateway is an application program interface

that allows client programs to generate SQL statements to be executed at a server

(see Section 5.10). Standards such as Open Database Connectivity (ODBC) and Open

Linking and Embedding for Databases (OLE-DB) from Microsoft and Java Database

Connectivity (JDBC) are emerging for gateways.

23.2.1 Creating and Maintaining a Warehouse

There are many challenges in creating and maintaining a large data warehouse. A good

database schema must be designed to hold an integrated collection of data copied from

diverse sources. For example, a company warehouse might include the inventory and

personnel departments’ databases, together with sales databases maintained by offices

in different countries. Since the source databases are often created and maintained by

different groups, there are a number of semantic mismatches across these databases,

such as different currency units, different names for the same attribute, and differences

in how tables are normalized or structured; these differences must be reconciled when

data is brought into the warehouse. After the warehouse schema is designed, the

Decision Support 681

warehouse must be populated, and over time, it must be kept consistent with the

source databases.

Data is extracted from operational databases and external sources, cleaned to mini-

mize errors and fill in missing information when possible, and transformed to recon-

cile semantic mismatches. Transforming data is typically accomplished by defining a

relational view over the tables in the data sources (the operational databases and other

external sources). Loading data consists of materializing such views and storing them

in the warehouse. Unlike a standard view in a relational DBMS, therefore, the view is

stored in a database (the warehouse) that is different from the database(s) containing

the tables it is defined over.

The cleaned and transformed data is finally loaded into the warehouse. Additional

preprocessing such as sorting and generation of summary information is carried out at

this stage. Data is partitioned and indexes are built for efficiency. Due to the large

volume of data, loading is a slow process. Loading a terabyte of data sequentially

can take weeks, and loading even a gigabyte can take hours. Parallelism is therefore

important for loading warehouses.

After data is loaded into a warehouse, additional measures must be taken to ensure

that the data in the warehouse is periodically refreshed to reflect updates to the data

sources and to periodically purge data that is too old from the warehouse (perhaps

onto archival media). Observe the connection between the problem of refreshing ware-

house tables and asynchronously maintaining replicas of tables in a distributed DBMS.

Maintaining replicas of source relations is an essential part of warehousing, and this

application domain is an important factor in the popularity of asynchronous replication

(Section 21.10.2), despite the fact that asynchronous replication violates the principle

of distributed data independence. The problem of refreshing warehouse tables (which

are materialized views over tables in the source databases) has also renewed interest

in incremental maintenance of materialized views. (We discuss materialized views in

Section 23.5.)

An important task in maintaining a warehouse is keeping track of the data currently

stored in it; this bookkeeping is done by storing information about the warehouse data

in the system catalogs. The system catalogs associated with a warehouse are very large

and are often stored and managed in a separate database called a metadata reposi-

tory. The size and complexity of the catalogs is in part due to the size and complexity

of the warehouse itself and in part because a lot of administrative information must

be maintained. For example, we must keep track of the source of each warehouse table

and when it was last refreshed, in addition to describing its fields.

The value of a warehouse is ultimately in the analysis that it enables. The data in a

warehouse is typically accessed and analyzed using a variety of tools, including OLAP

682 Chapter 23

query engines, data mining algorithms, information visualization tools, statistical pack-

ages, and report generators.

23.3 OLAP

OLAP applications are dominated by ad hoc, complex queries. In SQL terms, these

are queries that involve group-by and aggregation operators. The natural way to think

about typical OLAP queries, however, is in terms of a multidimensional data model.

We begin this section by presenting the multidimensional data model and comparing

it with a relational representation of data. We describe OLAP queries in terms of the

multidimensional data model and then consider some new implementation techniques

designed to support such queries. Finally, we briefly contrast database design for

OLAP applications with more traditional relational database design.

23.3.1 Multidimensional Data Model

In the multidimensional data model, the focus is on a collection of numeric measures.

Each measure depends on a set of dimensions. We will use a running example based

on sales data. The measure attribute in our example is sales. The dimensions are

Product, Location, and Time. Given a product, a location, and a time, we have at

most associated one sales value. If we identify a product by a unique identifier pid, and

similarly identify location by locid and time by timeid, we can think of sales information

as being arranged in a three-dimensional array Sales. This array is shown in Figure

23.2; for clarity, we show only the values for a single locid value, locid= 1, which can

be thought of as a slice orthogonal to the locid axis.

timeid

1 2 3

11
12

13

pi
d

locid

25

30

8 10

20

8 15

50

10

Figure 23.2 Sales: A Multidimensional Dataset

This view of data as a multidimensional array is readily generalized to more than

three dimensions. In OLAP applications, the bulk of the data can be represented in

such a multidimensional array. Indeed, some OLAP systems, for example, Essbase

Decision Support 683

from Arbor Software, actually store data in a multidimensional array (of course, im-

plemented without the usual programming language assumption that the entire array

fits in memory). OLAP systems that use arrays to store multidimensional datasets are

called multidimensional OLAP (MOLAP) systems.

The data in a multidimensional array can also be represented as a relation, as illus-

trated in Figure 23.3, which shows the same data as in Figure 23.2; additional rows

corresponding to the ‘slice’ locid= 2 are shown in addition to the data visible in Figure

23.3. This relation, which relates the dimensions to the measure of interest, is called

the fact table.

 pid locidtimeid sales

1 25

Sales

1

11 2 1 8

11 3 1 15

12 1 1 30

12 2 1 20

12 3 1 50

13 1 1

13 2 1 10

13 3 1 10

11 1 2 35

11 2 2 22

11 3 2 10

12 1 2 26

12 2 2 45

12 3 2 20

13 1 2 20

13 2 40

13 3 2 5

2

8

11

Stationery

 pid pname

Lee Jeans

Zord

Biro Pen

price

25

category

Apparel

Toys

2

18

Products

USAArizonaTempe5

2

1 Ames

Chennai TN

Iowa USA

India

 locid city state country

Locations

11

12

13

Figure 23.3 Locations, Products, and Sales Represented as Relations

Now let us turn to dimensions. Each dimension can have a set of associated attributes.

For example, the Location dimension is identified by the locid attribute, which we used

to identify a location in the Sales table. We will assume that it also has attributes

684 Chapter 23

country, state, and city. We will also assume that the Product dimension has attributes

pname, category, and price, in addition to the identifier pid. The category of a product

indicates its general nature; for example, a product pant could have category value

apparel. We will assume that the Time dimension has attributes date, week, month,

quarter, year, and holiday flag, in addition to the identifier timeid.

For each dimension, the set of associated values can be structured as a hierarchy.

For example, cities belong to states, and states belong to countries. Dates belong to

weeks and to months, both weeks and months are contained in quarters, and quarters

are contained in years. (Note that a week could span a month; thus, weeks are not

contained in months.) Some of the attributes of a dimension describe the position of

a dimension value with respect to this underlying hierarchy of dimension values. The

hierarchies for the Product, Location, and Time hierarchies in our example are shown

at the attribute level in Figure 23.4.

category

pname city

state

 country

month

quarter

year

date

week

LOCATIONTIMEPRODUCT

Figure 23.4 Dimension Hierarchies

Information about dimensions can also be represented as a collection of relations:

Locations(locid: integer, city: string, state: string, country: string)

Products(pid: integer, pname: string, category: string, price: real)

Times(timeid: integer, date: string, week: integer, month: integer,

quarter: integer, year: integer, holiday flag: boolean)

These relations are much smaller than the fact table in a typical OLAP application;

they are called the dimension tables. OLAP systems that store all information,

including fact tables, as relations are called relational OLAP (ROLAP) systems.

The Times table illustrates the attention paid to the Time dimension in typical OLAP

applications. SQL’s date and timestamp data types are not adequate; in order to

support summarizations that reflect business operations, information such as fiscal

quarters, holiday status, and so on is maintained for each time value.

Decision Support 685

23.3.2 OLAP Queries

Now that we have seen the multidimensional model of data, let us consider how such

data can be queried and manipulated. The operations supported by this model are

strongly influenced by end user tools such as spreadsheets. The goal is to give end users

who are not SQL experts an intuitive and powerful interface for common business-

oriented analysis tasks. Users are expected to pose ad hoc queries directly, without

relying on database application programmers. In this section we assume that the user

is working with a multidimensional dataset and that each operation returns either

a different presentation or summarization of this underlying dataset; the underlying

dataset is always available for the user to manipulate, regardless of the level of detail

at which it is currently viewed.

A very common operation is aggregating a measure over one or more dimensions. The

following queries are typical:

Find the total sales.

Find total sales for each city.

Find total sales for each state.

Find the top five products ranked by total sales.

The first three queries can be expressed as SQL queries over the fact and dimension

tables, but the last query cannot be expressed in SQL (although we can approximate

it if we return answers in sorted order by total sales, using ORDER BY).

When we aggregate a measure on one or more dimensions, the aggregated measure de-

pends on fewer dimensions than the original measure. For example, when we compute

the total sales by city, the aggregated measure is total sales and it depends only on

the Location dimension, whereas the original sales measure depended on the Location,

Time, and Product dimensions.

Another use of aggregation is to summarize at different levels of a dimension hierarchy.

If we are given total sales per city, we can aggregate on the Location dimension to obtain

sales per state. This operation is called roll-up in the OLAP literature. The inverse

of roll-up is drill-down: given total sales by state, we can ask for a more detailed

presentation by drilling down on Location. We can ask for sales by city or just sales

by city for a selected state (with sales presented on a per-state basis for the remaining

states, as before). We can also drill down on a dimension other than Location. For

example, we can ask for total sales for each product for each state, drilling down on

the Product dimension.

Another common operation is pivoting. Consider a tabular presentation of the Sales

table. If we pivot it on the Location and Time dimensions, we obtain a table of total

686 Chapter 23

sales for each location for each time value. This information can be presented as a

two-dimensional chart in which the axes are labeled with location and time values,

and the entries in the chart correspond to the total sales for that location and time.

Thus, values that appear in columns of the original presentation become labels of axes

in the result presentation. Of course, pivoting can be combined with aggregation; we

can pivot to obtain yearly sales by state. The result of pivoting is called a cross-

tabulation and is illustrated in Figure 23.5. Observe that in spreadsheet style, in

addition to the total sales by year and state (taken together), we also have additional

summaries of sales by year and sales by state.

WI CA

63

107

223

144

145

110

399

38

75

176

35

81

Total

1997

Total

1996

1995

Figure 23.5 Cross-Tabulation of Sales by Year and State

Pivoting can also be used to change the dimensions of the cross-tabulation; from a

presentation of sales by year and state, we can obtain a presentation of sales by product

and year.

The Time dimension is very important in OLAP. Typical queries include:

Find total sales by month.

Find total sales by month for each city.

Find the percentage change in the total monthly sales for each product.

Find the trailing n day moving average of sales. (For each day, we must compute

the average daily sales over the preceding n days.)

The first two queries can be expressed as SQL queries over the fact and dimension

tables. The third query can be expressed too, but it is quite complicated in SQL. The

last query cannot be expressed in SQL if n is to be a parameter of the query.

Clearly, the OLAP framework makes it convenient to pose a broad class of queries.

It also gives catchy names to some familiar operations: slicing a dataset amounts to

an equality selection on one or more dimensions, possibly also with some dimensions

projected out. Dicing a dataset amounts to a range selection. These terms come from

visualizing the effect of these operations on a cube or cross-tabulated representation

of the data.

Decision Support 687

Comparison with SQL Queries

Some OLAP queries cannot be easily expressed, or cannot be expressed at all, in SQL,

as we saw in the above discussion. Notably, queries that rank results and queries that

involve time-oriented operations fall into this category.

A large number of OLAP queries, however, can be expressed in SQL. Typically, they

involve grouping and aggregation, and a single OLAP operation leads to several closely

related SQL queries. For example, consider the cross-tabulation shown in Figure 23.5,

which was obtained by pivoting the Sales table. To obtain the same information, we

would issue the following queries:

SELECT SUM (S.sales)

FROM Sales S, Times T, Locations L

WHERE S.timeid=T.timeid AND S.locid=L.locid

GROUP BY T.year, L.state

This query generates the entries in the body of the chart (outlined by the dark lines).

The summary row at the bottom is generated by the query:

SELECT SUM (S.sales)

FROM Sales S, Times T

WHERE S.timeid=T.timeid

GROUP BY T.year

The summary column on the right is generated by the query:

SELECT SUM (S.sales)

FROM Sales S, Locations L

WHERE S.locid=L.locid

GROUP BY L.state

The example cross-tabulation can be thought of as roll-up on the Location dimension,

on the Time dimension, and on the Location and Time dimensions together. Each

roll-up corresponds to a single SQL query with grouping. In general, given a measure

with k associated dimensions, we can roll up on any subset of these k dimensions, and

so we have a total of 2k such SQL queries.

Through high-level operations such as pivoting, users can generate many of these

2k SQL queries. Recognizing the commonalities between these queries enables more

efficient, coordinated computation of the set of queries. A proposed extension to SQL

called the CUBE is equivalent to a collection of GROUP BY statements, with one GROUP

BY statement for each subset of the k dimensions. We illustrate it using the Sales

relation. Consider the following query:

688 Chapter 23

CUBE pid, locid, timeid BY SUM Sales

This query will roll up the table Sales on all eight subsets of the set {pid, locid, timeid}

(including the empty subset). It is equivalent to eight queries of the form:

SELECT SUM (S.sales)

FROM Sales S

GROUP BY grouping-list

The queries differ only in the grouping-list, which is some subset of the set {pid, locid,

timeid}. We can think of these eight queries as being arranged in a lattice, as shown

in Figure 23.6. The result tuples at a node can be aggregated further to compute the

result for any child of the node. This relationship between the queries arising in a CUBE

can be exploited for efficient evaluation.

{pid, locid, timeid}

{pid, locid} {pid, timeid} {locid, timeid}

{timeid}{pid}

{ }

{locid}

Figure 23.6 The Lattice of GROUP BY Queries in a CUBE Query

We conclude our discussion of the relationship between SQL and OLAP queries by

noting that they complement each other, and both are important for decision support.

The goal of OLAP is to enable end users to ask a broad class of business-oriented

queries easily and with interactive response times over very large datasets. SQL, on

the other hand, can be used to write complex queries that combine information from

several relations. The data need not be schemas corresponding to the multidimensional

data model, and the OLAP querying idioms are not always applicable. Such complex

queries are written by application programmers, compiled, and made available to end

users as ‘canned’ programs, often through a menu-driven graphical interface. The

importance of such SQL applications is reflected in the increased attention being paid

to optimizing complex SQL queries and the emergence of decision support oriented

SQL benchmarks, such as TPC-D.

A Note on Statistical Databases

Many OLAP concepts are present in earlier work on statistical databases (SDBs),

which are database systems designed to support statistical applications, although this

Decision Support 689

connection has not been sufficiently recognized because of differences in application

domains and terminology. The multidimensional data model, with the notions of a

measure associated with dimensions, and classification hierarchies for dimension val-

ues, is also used in SDBs. OLAP operations such as roll-up and drill-down have

counterparts in SDBs. Indeed, some implementation techniques developed for OLAP

have also been applied to SDBs.

Nonetheless, there are some differences arising from the different domains that OLAP

and SDBs were developed to support. For example, SDBs are used in socioeconomic

applications, where classification hierarchies and privacy issues are very important.

This is reflected in the fact that classification hierarchies in SDBs are more complex

than in OLAP and have received more attention, along with issues such as potential

breaches of privacy. (The privacy issue concerns whether a user with access to summa-

rized data can reconstruct the original, unsummarized data.) In contrast, OLAP has

been aimed at business applications with large volumes of data, and efficient handling

of very large datasets has received more attention than in the SDB literature.

23.3.3 Database Design for OLAP

Figure 23.7 shows the tables in our running sales example.

LOCATIONSPRODUCTS

SALES

TIMES

timeid year holiday_flag

timeid saleslocid

pid pname category price city countrystatelocid

pid

date week month quarter

Figure 23.7 An Example of a Star Schema

It suggests a star, centered at the fact table Sales; such a combination of a fact table

and dimension tables is called a star schema. This schema pattern is very common in

databases designed for OLAP. The bulk of the data is typically in the fact table, which

has no redundancy; it is usually in BCNF. In fact, to minimize the size of the fact

table, dimension identifiers (such as pid and timeid) are system-generated identifiers.

Information about dimension values is maintained in the dimension tables. Dimension

tables are usually not normalized. The rationale is that the dimension tables in a

database used for OLAP are static and update, insertion, and deletion anomalies are

not important. Further, because the size of the database is dominated by the fact table,

690 Chapter 23

Beyond B+ trees: Complex queries have motivated the addition of powerful

indexing techniques to DBMSs. In addition to B+ tree indexes, Oracle 8 supports

bitmap and join indexes, and maintains these dynamically as the indexed relations

are updated. Oracle 8 also supports indexes on expressions over attribute values,

e.g., 10 ∗ sal + bonus. Microsoft SQL Server uses bitmap indexes. Sybase IQ

supports several kinds of bitmap indexes, and may shortly add support for a

linear hashing based index. Informix UDS supports R trees and Informix XPS

supports bitmap indexes.

the space saved by normalizing dimension tables is negligible. Therefore, minimizing

the computation time for combining facts in the fact table with dimension information

is the main design criterion, which suggests that we avoid breaking a dimension table

into smaller tables (which might lead to additional joins).

Small response times for interactive querying are important in OLAP, and most systems

support the materialization of summary tables (typically generated through queries

using grouping). Ad hoc queries posed by users are answered using the original tables

along with precomputed summaries. A very important design issue is which summary

tables should be materialized to achieve the best use of available memory and to

answer commonly asked ad hoc queries with interactive response times. In current

OLAP systems, deciding which summary tables to materialize may well be the most

important design decision.

Finally, new storage structures and indexing techniques have been developed to support

OLAP, and they present the database designer with additional physical design choices.

We cover some of these implementation techniques briefly in the next section.

23.4 IMPLEMENTATION TECHNIQUES FOR OLAP

In this section we survey some implementation techniques motivated by the OLAP

environment. The goal is to provide a feel for how OLAP systems differ from more

traditional SQL systems; our discussion is far from comprehensive.

The mostly-read environment of OLAP systems makes the CPU overhead of maintain-

ing indexes negligible, and the requirement of interactive response times for queries

over very large datasets makes the availability of suitable indexes very important.

This combination of factors has led to the development of new indexing techniques.

We discuss several of these techniques. We then consider file organizations and other

OLAP implementation issues briefly.

Decision Support 691

23.4.1 Bitmap Indexes

Consider a table that describes customers:

Customers(custid: integer, name: string, gender: boolean, rating: integer)

The rating value is an integer in the range 1 to 5, and only two values are recorded for

gender. Columns with few possible values are called sparse. We can exploit sparsity

to construct a new kind of index that greatly speeds up queries on these columns.

The idea is to record values for sparse columns as a sequence of bits, one for each

possible value. For example, a gender value is either 10 or 01; a 1 in the first position

denotes male, and 1 in the second position denotes female. Similarly, 10000 denotes

the rating value 1, and 00001 denotes the rating value 5.

If we consider the gender values for all rows in the Customers table, we can treat this

as a collection of two bit vectors, one of which has the associated value ‘Male’ and

the other the associated value ‘Female’. Each bit vector has one bit per row in the

Customers table, indicating whether the value in that row is the value associated with

the bit vector. The collection of bit vectors for a column is called a bitmap index for

that column.

An example instance of the Customers table, together with the bitmap indexes for

gender and rating, is shown in Figure 23.8.

M F

1 0

1 0

0 1

1 0

custid name gender rating

112 Joe M 3

115 Ram M 5

119 Sue F 5

112 Woo M 4

1 2 3 4 5

0 0 1 0 0

0 0 0 0 1

0 0 0 0 1

0 0 0 1 0

Figure 23.8 Bitmap Indexes on the Customers Relation

Bitmap indexes offer two important advantages over conventional hash and tree in-

dexes. First, they allow the use of efficient bit operations to answer queries. For

example, consider the query “How many male customers have a rating of 5?” We can

take the first bit vector for gender and do a bit-wise AND with the fifth bit vector for

rating to obtain a bit vector that has 1 for every male customer with rating 5. We can

then count the number of 1s in this bit vector to answer the query. Second, bitmap

indexes can be much more compact than a traditional B+ tree index and are very

amenable to the use of compression techniques.

Bit vectors correspond closely to the rid-lists used to represent data entries in Alter-

native (3) for a traditional B+ tree index (see Section 8.3.1). In fact, we can think of a

692 Chapter 23

bit vector for a given age value, say, as an alternative representation of the rid-list for

that value. This leads to a possible way to combine bit vectors (and their advantages

of bit-wise processing) with B+ tree indexes on columns that are not sparse; we can

use Alternative (3) for data entries, using a bit vector representation of rid-lists. A

caveat is that if an rid-list is very small, the bit vector representation may be much

larger than a list of rid values, even if the bit vector is compressed. Further, the

use of compression leads to decompression costs, offsetting some of the computational

advantages of the bit vector representation.

23.4.2 Join Indexes

Computing joins with small response times is extremely hard for very large relations.

One approach to this problem is to create an index that is designed to speed up

specific join queries. Suppose that the Customers table is to be joined with a table

called Purchases (recording purchases made by customers) on the custid field. We can

create a collection of 〈c, p〉 pairs, where p is the rid of a Purchases record that joins

with a Customers record with custid c.

This idea can be generalized to support joins over more than two relations. We will

discuss the special case of a star schema, in which the fact table is likely to be joined

with several dimension tables. Consider a join query that joins fact table F with

dimension tables D1 and D2 and includes selection conditions on column C1 of table

D1 and column C2 of table D2. We store a tuple 〈r1, r2, r〉 in the join index if r1 is

the rid of a tuple in table D1 with value c1 in column C1, r2 is the rid of a tuple in

table D2 with value c2 in column C2, and r is the rid of a tuple in the fact table F,

and these three tuples join with each other.

The drawback of a join index is that the number of indexes can grow rapidly if several

columns in each dimension table are involved in selections and joins with the fact table.

An alternative kind of join index avoids this problem. Consider our example involving

fact table F and dimension tables D1 and D2. Let C1 be a column of D1 on which a

selection is expressed in some query that joins D1 with F. Conceptually, we now join

F with D1 to extend the fields of F with the fields of D1, and index F on the ‘virtual

field’ C1: If a tuple of D1 with value c1 in column C1 joins with a tuple of F with rid r,

we add a tuple 〈c1, r〉 to the join index. We create one such join index for each column

of either D1 or D2 that involves a selection in some join with F; C1 is an example of

such a column.

The price paid with respect to the previous version of join indexes is that join indexes

created in this way have to be combined (rid intersection) in order to deal with the join

queries of interest to us. This can be done efficiently if we make the new indexes bitmap

indexes; the result is called a bitmapped join index. The idea works especially well

if columns such as C1 are sparse, and therefore well suited to bitmap indexing.

Decision Support 693

Complex queries: The IBM DB2 optimizer recognizes star join queries and per-

forms rid-based semijoins (using Bloom filters) to filter the fact table. Then fact

table rows are rejoined to the dimension tables. Complex (multi-table) dimension

queries (called ‘snowflake queries’) are supported. DB2 also supports CUBE us-

ing smart algorithms that minimize sorts. Microsoft SQL Server optimizes star

join queries extensively. It considers taking the cross-product of small dimension

tables before joining with the fact table, the use of join indexes, and rid-based

semijoins. Oracle 8i also allows users to create dimensions to declare hierarchies

and functional dependencies. It supports the CUBE operator and optimizes star

join queries by eliminating joins when no column of a dimension table is part of

the query result. There are also DBMS products developed specially for decision

support applications, such as Sybase IQ and RedBrick (now part of Informix).

23.4.3 File Organizations

Since many OLAP queries involve just a few columns of a large relation, vertical

partitioning becomes attractive. However, storing a relation column-wise can degrade

performance for queries that involve several columns. An alternative in a mostly-read

environment is to store the relation row-wise, but to also store each column separately.

A more radical file organization is to regard the fact table as a large multidimensional

array, and to store it and index it as such. This approach is taken in MOLAP systems.

Since the array is much larger than available main memory, it is broken up into con-

tiguous chunks, as discussed in Section 25.7. In addition, traditional B+ tree indexes

are created to enable quick retrieval of chunks that contain tuples with values in a

given range for one or more dimensions.

23.4.4 Additional OLAP Implementation Issues

Our discussion of OLAP implementation techniques is far from complete. A number of

other implementation issues must be considered for efficient OLAP query evaluation.

First, the use of compression is becoming widespread in database systems aimed at

OLAP. The amount of information is so large that compression is obviously attractive.

Further, the use of data structures like bitmap indexes, which are highly amenable to

compression techniques, makes compression even more attractive.

Second, deciding which views to precompute and store in order to facilitate evaluation

of ad hoc queries is a challenging problem. Especially for aggregate queries, the rich

structure of operators such as CUBE offers many opportunities for a clever choice of

views to precompute and store. Although the choice of views to precompute is made

694 Chapter 23

by the database designer in current systems, ongoing research is aimed at automating

this choice.

Third, many OLAP systems are enhancing query language and optimization features

in novel ways. As an example of query language enhancement, Redbrick (recently

acquired by Informix) supports a version of SQL that allows users to define new ag-

gregation operators by writing code for initialization, iteration, and termination. For

example, if tuples with fields department, employee, and salary are retrieved in sorted

order by department, we can compute the standard deviation of salaries for each de-

partment; the initialization function would initialize the variables used to compute

standard deviation, the iteration function would update the variables as each tuple

is retrieved and processed, and the termination function would output the standard

deviation for a department as soon as the first tuple for the next department is en-

countered. (Several ORDBMSs also support user-defined aggregate functions, and it

is likely that this feature will be included in future versions of the SQL standard.) As

an example of novel optimization features, some OLAP systems try to combine multi-

ple scans, possibly part of different transactions, over a table. This seemingly simple

optimization can be challenging: If the scans begin at different times, for example, we

must keep track of the records seen by each scan to make sure that each scan sees

every tuple exactly once; we must also deal with differences in the speeds at which the

scan operations process tuples.

Finally, we note that the emphasis on query processing and decision support applica-

tions in OLAP systems is being complemented by a greater emphasis on evaluating

complex SQL queries in traditional SQL systems. Traditional SQL systems are evolv-

ing to support OLAP-style queries more efficiently, incorporating techniques previously

found only in specialized OLAP systems.

23.5 VIEWS AND DECISION SUPPORT

Views are widely used in decision support applications. Different groups of analysts

within an organization are typically concerned with different aspects of the business,

and it is convenient to define views that give each group insight into the business

details that concern them. Once a view is defined, we can write queries or new view

definitions that use it, as we saw in Section 3.6; in this respect a view is just like a base

table. Evaluating queries posed against views is very important for decision support

applications. In this section, we consider how such queries can be evaluated efficiently

after placing views within the context of decision support applications.

23.5.1 Views, OLAP, and Warehousing

Views are closely related to OLAP and data warehousing.

Decision Support 695

Views and OLAP: OLAP queries are typically aggregate queries. Analysts want

fast answers to these queries over very large datasets, and it is natural to consider

precomputing views (see Sections 23.5.3 and 23.5.4). In particular, the CUBE operator—

discussed in Section 23.3.2—gives rise to several aggregate queries that are closely

related. The relationships that exist between the many aggregate queries that arise

from a single CUBE operation can be exploited to develop very effective precomputation

strategies. The idea is to choose a subset of the aggregate queries for materialization in

such a way that typical CUBE queries can be quickly answered by using the materialized

views and doing some additional computation. The choice of views to materialize is

influenced by how many queries they can potentially speed up and by the amount

of space required to store the materialized view (since we have to work with a given

amount of storage space).

Views and Warehousing: A data warehouse is just a collection of asynchronously

replicated tables and periodically maintained views. A warehouse is characterized by

its size, the number of tables involved, and the fact that most of the underlying tables

are from external, independently maintained databases. Nonetheless, the fundamental

problem in warehouse maintenance is asynchronous maintenance of replicated tables

and materialized views (see Section 23.5.4).

23.5.2 Query Modification

Consider the view RegionalSales, defined below, which computes sales of products by

category and state:

CREATE VIEW RegionalSales (category, sales, state)

AS SELECT P.category, S.sales, L.state

FROM Products P, Sales S, Locations L

WHERE P.pid = S.pid AND S.locid = L.locid

The following query computes the total sales for each category by state:

SELECT R.category, R.state, SUM (R.sales)

FROM RegionalSales R

GROUP BY R.category, R.state

While the SQL-92 standard does not specify how to evaluate queries on views, it is

useful to think in terms of a process called query modification. The idea is to replace

the occurrence of RegionalSales in the query by the view definition. The result on the

above query is:

SELECT R.category, R.state, SUM (R.sales)

FROM (SELECT P.category, S.sales, L.state

696 Chapter 23

FROM Products P, Sales S, Locations L

WHERE P.pid = S.pid AND S.locid = L.locid) AS R

GROUP BY R.category, R.state

23.5.3 View Materialization versus Computing on Demand

We can answer a query on a view by evaluating the modified query constructed using

the query modification technique described above. Often, however, queries against

complex view definitions must be answered very fast because users engaged in decision

support activities require interactive response times. Even with sophisticated opti-

mization and evaluation techniques, there is a limit to how fast we can answer such

queries.

A popular approach to dealing with this problem is to evaluate the view definition

and store the result. When a query is now posed on the view, the (unmodified)

query is executed directly on the precomputed result. This approach is called view

materialization and is likely to be much faster than the query modification approach

because the complex view need not be evaluated when the query is computed. The

drawback, of course, is that we must maintain the consistency of the precomputed (or

materialized) view whenever the underlying tables are updated.

Consider the RegionalSales view. It involves a join of Sales, Products, and Locations

and is likely to be expensive to compute. On the other hand, if it is materialized and

stored with a clustered B+ tree index on the composite search key 〈category, state,

sales〉, we can answer the example query by an index-only scan.

Given the materialized view and this index, we can also answer queries of the following

form efficiently:

SELECT R.state, SUM (R.sales)

FROM RegionalSales R

WHERE R.category = ‘Laptop’

GROUP BY R.state

To answer such a query, we can use the index on the materialized view to locate the

first index leaf entry with category = ‘Laptop’ and then scan the leaf level until we

come to the first entry with category not equal to ‘Laptop.’

The given index is less effective on the following query, for which we are forced to scan

the entire leaf level:

SELECT R.state, SUM (R.sales)

FROM RegionalSales R

Decision Support 697

WHERE R.state = ‘Wisconsin’

GROUP BY R.category

This example indicates how the choice of views to materialize and the indexes to create

are affected by the expected workload. This point is illustrated further by our next

example.

Consider the following two queries:

SELECT P.category, SUM (S.sales)

FROM Products P, Sales S

WHERE P.pid = S.pid

GROUP BY P.category

SELECT L.state, SUM (S.sales)

FROM Locations L, Sales S

WHERE L.locid = S.locid

GROUP BY L.state

The above two queries require us to join the Sales table (which is likely to be very large)

with another table and to then aggregate the result. How can we use materialization

to speed these queries up? The straightforward approach is to precompute each of the

joins involved (Products with Sales and Locations with Sales) or to precompute each

query in its entirety. An alternative approach is to define the following view:

CREATE VIEW TotalSales (pid, locid, total)

AS SELECT S.pid, S.locid, SUM (S.sales)

FROM Sales S

GROUP BY S.pid, S.locid

The view TotalSales can be materialized and used instead of Sales in our two example

queries:

SELECT P.category, SUM (T.total)

FROM Products P, TotalSales T

WHERE P.pid = T.pid

GROUP BY P.category

SELECT L.state, SUM (T.total)

FROM Locations L, TotalSales T

WHERE L.locid = T.locid

GROUP BY L.state

698 Chapter 23

23.5.4 Issues in View Materialization

There are three main questions to consider with regard to view materialization:

1. What views should we materialize and what indexes should we build on the ma-

terialized views?

2. Given a query on a view and a set of materialized views, can we exploit the

materialized views to answer the query?

3. How frequently should we refresh materialized views in order to make them con-

sistent with changes to the underlying tables?

As the example queries using TotalSales illustrated, the answers to the first two ques-

tions are related. The choice of views to materialize and index is governed by the

expected workload, and the discussion of indexing in Chapter 16 is relevant to this

question as well. The choice of views to materialize is more complex than just choos-

ing indexes on a set of database tables, however, because the range of alternative views

to materialize is wider. The goal is to materialize a small, carefully chosen set of views

that can be utilized to quickly answer most of the important queries. Conversely, once

we have chosen a set of views to materialize, we have to consider how they can be used

to answer a given query.

A materialized view is said to be refreshed when we make it consistent with changes to

its underlying tables. Ideally, algorithms for refreshing a view should be incremental

in that the cost is proportional to the extent of the change, rather than the cost of

recomputing the view from scratch. While it is usually possible to incrementally refresh

views when new tuples are added to the underlying tables, incremental refreshing is

harder when tuples are deleted from the underlying tables.

A view maintenance policy is a decision about when a view is refreshed and is in-

dependent of whether the refresh is incremental or not. A view can be refreshed within

the same transaction that updates the underlying tables. This is called immediate

view maintenance. The update transaction is slowed by the refresh step, and the

impact of refresh increases with the number of materialized views that depend upon

the updated table.

Alternatively, we can defer refreshing the view. Updates are captured in a log and

applied subsequently to the materialized views. There are several deferred view

maintenance policies:

1. Lazy: The materialized view V is refreshed at the time a query is evaluated

using V, if V is not already consistent with its underlying base tables. This

approach slows down queries rather than updates, in contrast to immediate view

maintenance.

Decision Support 699

Views for decision support: DBMS vendors are enhancing their main rela-

tional products to support decision support queries. IBM DB2 supports materi-

alized views with transaction-consistent or user-invoked maintenance. Microsoft

SQL Server supports partition views, which are unions of (many) horizontal

partitions of a table. These are aimed at a warehousing environment where each

partition could be, for example, a monthly update. Queries on partition views

are optimized so that only relevant partitions are accessed. Oracle 8i supports

materialized views with transaction-consistent, user-invoked, or time-scheduled

maintenance.

2. Periodic: The materialized view is refreshed periodically, e.g., once a day. The

discussion of the Capture and Apply steps in asynchronous replication (see Section

21.10.2) should be reviewed at this point since it is very relevant to periodic view

maintenance. In fact, many vendors are extending their asynchronous replication

features to support materialized views. Materialized views that are refreshed

periodically are also called snapshots.

3. Forced: The materialized view is refreshed after a certain number of changes

have been made to the underlying tables.

In periodic and forced view maintenance, queries may see an instance of the material-

ized view that is not consistent with the current state of the underlying tables. That

is, the queries would see a different set of tuples if the view definition was recomputed.

This is the price paid for fast updates and queries, and the trade-off is similar to the

trade-off made in using asynchronous replication.

23.6 FINDING ANSWERS QUICKLY

A recent trend, fueled in part by the popularity of the Internet, is an emphasis on

queries for which a user wants only the first few, or the ‘best’ few, answers quickly.

When users pose queries to a search engine such as AltaVista, they rarely look beyond

the first or second page of results. If they do not find what they are looking for, they

refine their query and resubmit it. The same phenomenon is being observed in decision

support applications, and some DBMS products (e.g., DB2) already support extended

SQL constructs to specify such queries. A related trend is that for complex queries,

users would like to see an approximate answer quickly and then have it be continually

refined, rather than wait until the exact answer is available. We now discuss these two

trends briefly.

700 Chapter 23

23.6.1 Top N Queries

An analyst often wants to identify the top-selling handful of products, for example.

We can sort by sales for each product and return answers in this order. If we have a

million products and the analyst is only interested in the top 10, this straightforward

evaluation strategy is clearly wasteful. Thus, it is desirable for users to be able to

explicitly indicate how many answers they want, making it possible for the DBMS to

optimize execution. The example query below asks for the top 10 products ordered by

sales in a given location and time:

SELECT P.pid, P.pname, S.sales

FROM Sales S, Products P

WHERE S.pid=P.pid AND S.locid=1 AND S.timeid=3

ORDER BY S.sales DESC

OPTIMIZE FOR 10 ROWS

The OPTIMIZE FOR N ROWS construct is not in SQL-92 (or even SQL:1999), but it

is supported in IBM’s DB2 product, and other products (e.g., Oracle 7) have similar

constructs. In the absence of a cue such as OPTIMIZE FOR 10 ROWS, the DBMS computes

sales for all products and returns them in descending order by sales. The application

can close the result cursor (i.e., terminate the query execution) after consuming 10

rows, but considerable effort has already been expended in computing sales for all

products and sorting them.

Now let us consider how a DBMS can make use of the OPTIMIZE FOR cue to execute

the query efficiently. The key is to somehow compute sales only for products that are

likely to be in the top 10 by sales. Suppose that we know the distribution of sales

values because we maintain a histogram on the sales column of the Sales relation. We

can then choose a value of sales, say c, such that only 10 products have a larger sales

value. For those Sales tuples that meet this condition, we can apply the location and

time conditions as well and sort the result. Evaluating the following query is equivalent

to this approach:

SELECT P.pid, P.pname, S.sales

FROM Sales S, Products P

WHERE S.pid=P.pid AND S.locid=1 AND S.timeid=3 AND S.sales > c

ORDER BY S.sales DESC

This approach is, of course, much faster than the alternative of computing all product

sales and sorting them, but there are some important problems to resolve:

1. How do we choose the sales cutoff value c? Histograms and other system statistics

can be used for this purpose, but this can be a tricky issue. For one thing, the

statistics maintained by a DBMS are only approximate. For another, even if we

Decision Support 701

choose the cutoff to reflect the top 10 sales values accurately, other conditions in

the query may eliminate some of the selected tuples, leaving us with fewer than

10 tuples in the result.

2. What if we have more than 10 tuples in the result? Since the choice of the cutoff

c is approximate, we could get more than the desired number of tuples in the

result. This is easily handled by returning just the top 10 to the user. We have

still saved considerably with respect to the approach of computing sales for all

products, thanks to the conservative pruning of irrelevant sales information, using

the cutoff c.

3. What if we have fewer than 10 tuples in the result? Even if we choose the sales

cutoff c conservatively, there is the possibility that we compute fewer than 10

result tuples. In this case, we can re-execute the query with a smaller cutoff value

c2, or simply re-execute the original query with no cutoff.

The effectiveness of the approach depends on how well we can estimate the cutoff, and

in particular, on minimizing the number of times we obtain fewer than the desired

number of result tuples.

23.6.2 Online Aggregation

Consider the following query, which asks for the average sales amount by state:

SELECT L.state, AVG (S.sales)

FROM Sales S, Locations L

WHERE S.locid=L.locid

GROUP BY L.state

This can be an expensive query if Sales and Locations are large relations, and we can-

not achieve fast response times with the traditional approach of computing the anwer

in its entirety when the query is presented. One alternative, as we have seen, is to

use precomputation. Another alternative is to compute the answer to the query when

the query is presented, but to return an approximate answer to the user as soon as

possible. As the computation progresses, the answer quality is continually refined.

This approach is called online aggregation. It is very attractive for queries involv-

ing aggregation, because efficient techniques for computing and refining approximate

answers are available.

Online aggregation is illustrated in Figure 23.9: For each state—the grouping criterion

for our example query—the current value for average sales is displayed, together with

a confidence interval. The entry for Alaska tells us that the current estimate of average

per-store sales in Alaska is $2,832.50, and that this is within the range $2,700.30 and

$2,964.70 with 93 percent probability. The status bar in the first column indicates how

702 Chapter 23

PRIORITIZE AVG(sales) Confidence Intervalstate

Arizona

Alaska 2,832.5

Alabama 5,232.5

STATUS

Wyoming

6,432.5

4,243.5 92% 152.3

98%

93%

97% 103.4

132.2

52.3

Figure 23.9 Online Aggregation

close we are to arriving at an exact value for the average sales, and the second column

indicates whether calculating the average sales for this state is a priority. Estimating

average sales for Alaska is not a priority, but estimating it for Arizona is a priority.

As the figure indicates, the DBMS devotes more system resources to estimating the

average sales for prioritized states; the estimate for Arizona is much tighter than that

for Alaska, and holds with a higher probability. Users can set the priority for a state

by clicking on the priority button at any time during the execution. This degree of

interactivity, together with the continuous feedback provided by the visual display,

makes online aggregation an attractive technique.

In order to implement online aggregation, a DBMS must incorporate statistical tech-

niques to provide confidence intervals for approximate answers and use nonblocking

algorithms for the relational operators. An algorithm is said to block if it does not

produce output tuples until it has consumed all of its input tuples. For example, the

sort-merge join algorithm blocks because sorting requires all input tuples before deter-

mining the first output tuple. Nested loops join and hash join are therefore preferable

to sort-merge join for online aggregation. Similarly, hash-based aggregation is better

than sort-based aggregation.

23.7 POINTS TO REVIEW

A data warehouse contains consolidated data drawn from several different databases

together with historical and summary information. Online analytic processing

(OLAP) applications and data mining applications generate complex queries that

make traditional SQL systems inadequate. Such applications support high-level

decision making and are also called decision support applications. (Section 23.1)

Decision Support 703

Information about daily operations of an organization is stored in operational

databases. This data is extracted through gateways, then cleaned and transformed

before loading it into the data warehouse. Data in the data warehouse is periodi-

cally refreshed to reflect updates, and it is periodically purged to delete outdated

information. The system catalogs of the data warehouse can be very large and are

managed in a separate database called the metadata repository. (Section 23.2)

The multidimensional data model consists of measures and dimensions. The re-

lation that relates the dimensions to the measures is called the fact table. OLAP

systems that store multidimensional datasets as arrays are called multidimensional

OLAP (MOLAP) systems. OLAP systems that store the data in relations are

called relational OLAP (ROLAP) systems. Common OLAP operations have re-

ceived special names: roll-up, drill-down, pivoting, slicing, and dicing. Databases

designed for OLAP queries commonly arrange the fact and dimension tables in a

star schema. (Section 23.3)

Index structures that are especially suitable for OLAP systems include bitmap

indexes and join indexes. (Section 23.4)

Views are widely used in decision support applications. Since decision support

systems require fast response times for interactive queries, queries involving views

must be evaluated very efficiently. Views can either be materialized or computed

on demand. We say that a materialized view is refreshed when we make it consis-

tent with changes to the underlying tables. An algorithm for refreshing a view is

incremental if the update cost is proportional to the amount of change at the base

tables. A view maintenance policy determines when a view is refreshed. In im-

mediate view maintenance the view is updated within the same transaction that

modifies the underlying tables; otherwise the policy is said to be deferred view

maintenance. Deferred view maintenance has three variants: In lazy maintenance

we refresh the view at query time. In periodic maintenance we refresh the view pe-

riodically; such views are also called snapshots. In forced maintenance we refresh

the view after a certain number of changes have been made to the base tables.

(Section 23.5)

New query paradigms include top N queries and online aggregation. In top N

queries we only want to retrieve the first N rows of the query result. An on-

line aggregation query returns an approximate answer to an aggregation query

immediately and refines the answer progressively. (Section 23.6)

EXERCISES

Exercise 23.1 Briefly answer the following questions.

1. How do warehousing, OLAP, and data mining complement each other?

704 Chapter 23

2. What is the relationship between data warehousing and data replication? Which form of

replication (synchronous or asynchronous) is better suited for data warehousing? Why?

3. What is the role of the metadata repository in a data warehouse? How does it differ

from a catalog in a relational DBMS?

4. What are the considerations in designing a data warehouse?

5. Once a warehouse is designed and loaded, how is it kept current with respect to changes

to the source databases?

6. One of the advantages of a warehouse is that we can use it to track how the contents of

a relation change over time; in contrast, we have only the current snapshot of a relation

in a regular DBMS. Discuss how you would maintain the history of a relation R, taking

into account that ‘old’ information must somehow be purged to make space for new

information.

7. Describe dimensions and measures in the multidimensional data model.

8. What is a fact table, and why is it so important from a performance standpoint?

9. What is the fundamental difference between MOLAP and ROLAP systems?

10. What is a star schema? Is it typically in BCNF? Why or why not?

11. How is data mining different from OLAP?

Exercise 23.2 Consider the instance of the Sales relation shown in Figure 23.3.

1. Show the result of pivoting the relation on pid and timeid.

2. Write a collection of SQL queries to obtain the same result as in the previous part.

3. Show the result of pivoting the relation on pid and locid.

Exercise 23.3 Consider the cross-tabulation of the Sales relation shown in Figure 23.5.

1. Show the result of roll-up on locid (i.e., state).

2. Write a collection of SQL queries to obtain the same result as in the previous part.

3. Show the result of roll-up on locid followed by drill-down on pid.

4. Write a collection of SQL queries to obtain the same result as in the previous part,

starting with the cross-tabulation shown in Figure 23.5.

Exercise 23.4 Consider the Customers relation and the bitmap indexes shown in Figure

23.8.

1. For the same data, if the underlying set of rating values is assumed to range from 1 to

10, show how the bitmap indexes would change.

2. How would you use the bitmap indexes to answer the following queries? If the bitmap

indexes are not useful, explain why.

(a) How many customers with a rating less than 3 are male?

(b) What percentage of customers are male?

(c) How many customers are there?

Decision Support 705

(d) How many customers are named Woo?

(e) Find the rating value with the greatest number of customers and also find the num-

ber of customers with that rating value; if several rating values have the maximum

number of customers, list the requested information for all of them. (Assume that

very few rating values have the same number of customers.)

Exercise 23.5 In addition to the Customers table of Figure 23.8 with bitmap indexes on

gender and rating, assume that you have a table called Prospects, with fields rating and

prospectid. This table is used to identify potential customers.

1. Suppose that you also have a bitmap index on the rating field of Prospects. Discuss

whether or not the bitmap indexes would help in computing the join of Customers and

Prospects on rating.

2. Suppose that you do not have a bitmap index on the rating field of Prospects. Discuss

whether or not the bitmap indexes on Customers would help in computing the join of

Customers and Prospects on rating.

3. Describe the use of a join index to support the join of these two relations with the join

condition custid=prospectid.

Exercise 23.6 Consider the instances of the Locations, Products, and Sales relations shown

in Figure 23.3.

1. Consider the basic join indexes described in Section 23.4.2. Suppose you want to optimize

for the following two kinds of queries: Query 1 finds sales in a given city, and Query

2 finds sales in a given state. Show the indexes that you would create on the example

instances shown in Figure 23.3.

2. Consider the bitmapped join indexes described in Section 23.4.2. Suppose you want to

optimize for the following two kinds of queries: Query 1 finds sales in a given city, and

Query 2 finds sales in a given state. Show the indexes that you would create on the

example instances shown in Figure 23.3.

3. Consider the basic join indexes described in Section 23.4.2. Suppose you want to optimize

for the following two kinds of queries: Query 1 finds sales in a given city for a given

product name, and Query 2 finds sales in a given state for a given product category.

Show the indexes that you would create on the example instances shown in Figure 23.3.

4. Consider the bitmapped join indexes described in Section 23.4.2. Suppose you want to

optimize for the following two kinds of queries: Query 1 finds sales in a given city for a

given product name, and Query 2 finds sales in a given state for a given product category.

Show the indexes that you would create on the example instances shown in Figure 23.3.

Exercise 23.7 Consider the view NumReservations defined below:

CREATE VIEW NumReservations (sid, sname, numres)

AS SELECT S.sid, S.sname, COUNT (*)

FROM Sailors S, Reserves R

WHERE S.sid = R.sid

GROUP BY S.sid, S.sname

706 Chapter 23

1. How is the following query, which is intended to find the highest number of reservations

made by some one sailor, rewritten using query modification?

SELECT MAX (N.numres)

FROM NumReservations N

2. Consider the alternatives of computing on demand and view materialization for the above

query. Discuss the pros and cons of materialization.

3. Discuss the pros and cons of materialization for the following query:

SELECT N.sname, MAX (N.numres)

FROM NumReservations N

GROUP BY N.sname

BIBLIOGRAPHIC NOTES

A good survey of data warehousing and OLAP is presented in [137], which is the source of

Figure 23.1. [597] provides an overview of OLAP and statistical database research, showing

the strong parallels between concepts and research in these two areas. The book by Kimball

[374], one of the pioneers in warehousing, and the collection of papers [51] offer a good practical

introduction to the area. The term OLAP was popularized by Codd’s paper [160]. For a recent

discussion of the performance of algorithms utilizing bitmap and other nontraditional index

structures, see [500].

[624] discusses how queries on views can be converted to queries on the underlying tables

through query modification. [308] compares the performance of query modification versus

immediate and deferred view maintenance. [618] presents an analytical model of materialized

view maintenance algorithms. A number of papers discuss how materialized views can be

incrementally maintained as the underlying relations are changed. This area has become very

active recently, in part because of the interest in data warehouses, which can be thought of

as collections of views over relations from various sources. An excellent overview of the state

of the art can be found in [293], which contains a number of influential papers together with

additional material that provides context and background. The following partial list should

provide pointers for further reading: [87, 161, 162, 294, 312, 498, 524, 553, 577, 616, 700].

[285] introduced the CUBE operator, and optimization of CUBE queries and efficient maintenance

of the result of a CUBE query have been addressed in several papers, including [9, 81, 182, 310,

320, 389, 552, 556, 598, 699]. Related algorithms for processing queries with aggregates and

grouping are presented in [136, 139]. [538] addresses the implementation of queries involving

generalized quantifiers such as a majority of. [619] describes an access method to support

processing of aggregate queries.

[114, 115] discuss how to evaluate queries for which only the first few answers are desired.L

[192] considers how a probabilistic approach to query optimization can be applied to this

problem. [316, 40] discuss how to return approximate answers to aggregate queries and to

refine them ‘online.’

